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Abstract By virtue of minimization of a phenomenological expression for the free energy 
of domain structures of SOA magnetic films the conditions under which the amorphimion of 
domain Structures lakes place are found. It is shown that domain structure ordering or melting 
may be described by a thermal model in which the agitation by an oscillating magnetic field 
creates an effective temperamre. 

It is well known that domain structures (DSs) in thin films appearing spontaneously from a 
homogeneous magnetic state are disordered DSS. Furthermore, DS disorder in thin magnetic 
films may be the result of an order-disorder transition induced by a change in temperature 
or an external magnetic field [1-5]. 

This paper aims to describe ordering and melting of domain pattems in thin soft magnetic 
films. Considering a domain system as a set of interacting particles, we assume the existence 
of thermal fluctuations which is taken into account by the addition of entropy terms in a 
DS thermodynamic potential. We also suggest a definition of the entropy of melting which 
differs from the entropy defined as that of communal sharing of the volume [6]. 

If we assume that, with increasing temperature, n < N (N is the number of particles 
of the lattice and n is the number of defects) particles leave lattice sites and occupy 
neighbouring voids, the configurational part of the lattice entropy is 171 

S = -kN[t lnt  + ( I  - t ) l n ( l  -:)I (1) 

where t = n / N  (< 1 and k is Boltzmann’s constant. The equilibrium value of 6 can be 
calculated by minimizing the free energy 

F = Fo+ N ~ w  - TS(5) (2) 

where w is the energy of one point defect, FO is the free energy of the perfect lattice and 
T is the temperature. 

Minimizing (2)  with respect to 5 ,  we obtain 

60 = (1 + exp(w/kT))-’ N exp(-w/kT). (3) 

Since the conditions for the existence of a freeenergy minimum (2) are fulfilled at any 
5 < 1, equations (3) determines the relative concentration of the equilibrium defects in the 
lattice. The average cluster size of a perfect lattice is L, = L / f i  (where L = a n  is 
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the linear system size and a is the lattice period), and taking into account (3) we can write 
L ,--a - :’/’ = a11 + exp(w/kT)]’/’. 

We now consider the melting of a two-dimensional lattice as a continuous type of 
transition. Since the defect concentration (3) increases with increasing temperature and 
correspondingly the average cluster size decreases, at a certain temperature the lattice 
becomes amorphous. It is self-evident that a lattice can be considered as amorphous when 
L, --f a .  On the other hand, we can study the threshhold of percolation of bonds in a 
two-dimensional lattice assuming that the orientational order vanishes (orientational order 
is order in the system of bonds) if the fraction of undestroyed bonds y < yn (where y ,  
is the percolation threshold). If we define a cluster as a set of bonded lattice nodes, an 
infinite cluster ceases to exist when < y.. The lattice in this state can be called a 
liquid-crystal phase. As is well known, the thresholds of percolation for problems of bonds 
for flat triangular and square lattices are y:’) = 0.3473 and y:’) = 0.5, respectively. The 
corresponding values of < for these lattices are CA’) = 0.326 and CA’) = 0.25, respectively. 
Defining the lattice entropy of melting as AS = S(&) - S(0) we obtain AS(’) = 0.631 kN 
and AS(’) = 0.562 kN; there is good agreement with the results of numerical experiments 
on two-dimensional melting and the well known experimental rule AS = k N  I n 2  (see [6] 
and references therein). 

It is seen from (3) that the equilibrium defect number of a DS is determined by the 
relation between the energy of nucleation of a defect and the thermal energy. The defect 
nucleation energy is approximately equal to the domain interaction energy Using a dipole 
approximation this energy can be written as 
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w = ( 4 r r M ) ’ ~ h ’ x ~ z - ~  (4 ) 

where h is the film thickness, M is the saturation magnetization, x = d/h,  z = a / h ,  d is 
the average domain size and c is a numerical coefficient (for a hexagonal bubble lattice, 
c = 0.086 [SI). Usually w >> kT and 50 + 0 in accordance with (3) .  

Nevertheless, there are two cases when these energies can be of the same order and the 
entropy term contribution to the free energy (2) becomes significant. 

The first case is the temperature range just below the Curie point Tc. Here the saturation 
magnetization decreases rapidly with increasing T according to M ( T )  = Mo(1 - T/Tc)a,  
where j3 = 0.3-0.5 and MO = M(0) .  In this case the equilibrium defect concentration 
increases as 

where BT = TC - T .  The triangular lattice is amorphous at (0 = f;’) = 0.326. From (5) 
the temperature range 6T in which a DS can exist only in a disordered state (liquid-crystal 
phase) is 

Equation (6) gives 6T = 10-’-10-’ K for 4zM0 = 100 G, h Y cm, xz-’ = 0.1 and 
x = 1. Amorphization of DSS near the Curie point has been observed experimentally [l]. 

The second case when the contribution of thermal fluctuations leads to amorphization of 
DSS may also be obtained from (6). Indeed, the structure is amorphous at all temperatures 
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in its range of existence ( A T  - Tc) if the expression in large parentheses is ( 6 )  is about 
unity. We derive the film thickness from the last condition as 

Equation (7) gives h < Id 8, for the above values of the parameters. Thus we come 
to the conclusion that DSS in very thin films must be disordered at all temperatures in their 
range of existence. 

DSS existing in an amorphous or cluster form in thicker films should be treated as frozen, 
since their relaxation to an equilibrium state (i.e. to a DS with a small defect concentration) 
takes an essentially infinite time, since kT << W .  Indeed, let a system be in a non-equilibrium 
state with defect concentration p # b. Let us find the relaxation time to an equilibrium 
state. The entropy production rate is obtained from (1): 

We choose the thermodynamic flow J and the thermodynamic force X satisfying the 
relation ,$ = J X  and equation (8): 

X = -k[ ln t  - ln(1 - E ) ] ,  (10) 

The physical meaning of the flow is the number of particles relaxing to an equilibrium 
state per second. We assume that the flow is proportional to the thermodynamic force, i.e. 

where LO is the Onsager coefficient. Letting the deviation Sg = 6 - CO be small and 
linearizing (1 1) with respect to &e, we can obtain the relaxation time 

(12) 

Assuming that the kinetic coefficient in (12) is proportional to the temperature (in analogy 
with the diffusion coefficient), we find that the relaxation time tends to infinity at low 
temperatures. That is why we can call such amorphous and cluster structures frozen. 

On the other hand, it is well known that ordering of amophous DSS can be achieved by 
an oscillating external magnetic field with a small amplitude H,. This field is necessary not 
only to overcome the static coercivity banier of domain walls but also to act as an effective 
temperature. This effective temperature can be inntroduced as ? = (mou2/2) (here the 
effective temperature is measured in the units of an energy and mo is the domain wall 
mass) taking into account domain oscillations in the vicinity of lattice nodes with velocity 
U = pH (fi is the mobility coefficient of a domain wall and H = H, cos(wt), where w is 
the frequency of the oscillating field). For bubble lattices the following can be obtained 
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where a is the relaxation coefficient and AB is the width of the Bloch domain wall. The 
effective temperature is of the same order as the interaction energy of domains in a lattice 
if Hm/4rrM = 2 o 1 ( 2 h ~ x ~ ) ~ / ~ ( z ~ A ) - ~ / ~ .  For (Y = 10-'-10-2 and As/h = we obtain 
an estimate of the field amplitude H,,,/4nM N (1-5) x lo-' which corresponds to the 
experimental values of field amplitude necessary to order DSS [9]. The dependence of the 
ordering time on the amplitude of the oscillating field, domain sizes and the film parameters 
follows from (12) and (13) (t is determined up to a constant B ) :  
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B N  
8T 

t=:. 

Using the effective temperature (13) it is possible to find the 'melting' temperature of 
a hexagonal bubble lattice. Assuming that the lattice turns into a liquid crystal phase at 
{(Tmelt) = 0.326, we obtain from (3) and (13) 

(15) 2 4 2 312 - 
T,a = 0.024(4xM) d h p 

where p is the number of bubbles per unit area. of the surface. 
Finally, consideration of the entropy terms in the free energy of DSS of thin soft magnetic 

films leads to the conclusions that DSS must exist in a disordered state in one of two cases: 
Firstly, if the film temperature is close to the point where the saturation magnetization 
becomes zero and, secondly, if the film thickness does not exceed 10'-lo3 monolayers. DS 
disorder observed in defectless films is frozen in all other cases. The ordering of DSS by an 
oscillating external magnetic field is a relaxation from a DS with a large number of frozen 
defects to a DS with the equilibrium defect concentration. During this process the oscillating 
magnetic field acts as an effective temperature. 
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